Robust and Efficient Boosting Method Using the Conditional Risk.
نویسندگان
چکیده
Well known for its simplicity and effectiveness in classification, AdaBoost, however, suffers from overfitting when class-conditional distributions have significant overlap. Moreover, it is very sensitive to noise that appears in the labels. This paper tackles the above limitations simultaneously via optimizing a modified loss function (i.e., the conditional risk). The proposed approach has the following two advantages. First, it is able to directly take into account label uncertainty with an associated label confidence. Second, it introduces a trustworthiness measure on training samples via the Bayesian risk rule, and hence the resulting classifier tends to have finite sample performance that is superior to that of the original AdaBoost when there is a large overlap between class conditional distributions. Theoretical properties of the proposed method are investigated. Extensive experimental results using synthetic data and real-world data sets from UCI machine learning repository are provided. The empirical study shows the high competitiveness of the proposed method in predication accuracy and robustness when compared with the original AdaBoost and several existing robust AdaBoost algorithms.
منابع مشابه
Robust portfolio selection with polyhedral ambiguous inputs
Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...
متن کاملRobust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models
Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...
متن کاملبهکارگیری بهینه سازی استوار در مساله انتخاب سبد سهام با افت سرمایه در معرض خطر مشروط
Portfolio selection problem is one of the most important problems in finance. This problem tries to determine the optimal investment allocation such that the investment return be maximized and investment risk be minimized. Many risk measures have been developed in the literature until now; however, Conditional Drawdown at Risk is the newest one, which is a conditional risk value type problem. T...
متن کاملThree steps method for portfolio optimization by using Conditional Value at Risk measure
Comprehensive methods must be used for portfolio optimization. For this purpose, financial data of stock companies, inputs and outputs variable, the risk measure and investor’s preferences must be considered. By considering these items, we propose a method for portfolio optimization. In this paper, we used financial data of companies for screening the stock companies. We used Conditional Value ...
متن کاملEfficient Simulation of a Random Knockout Tournament
We consider the problem of using simulation to efficiently estimate the win probabilities for participants in a general random knockout tournament. Both of our proposed estimators, one based on the notion of “observed survivals” and the other based on conditional expectation and post-stratification, are highly effective in terms of variance reduction when compared to the raw simulation estimato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks and learning systems
دوره شماره
صفحات -
تاریخ انتشار 2017